Problem 1-3

Determine the resultant internal loadings acting on section $b-b$ through the centroid C on the beam.

Prob. 1-3

Solution

The smooth surface at B prevents horizontal motion, and the external pin at A prevents horizontal and vertical motion. As a result, there are three unknown forces in the free-body diagram of the beam shown below.

The distributed force is treated as a single resultant force applied through the centroid of the triangle,

$$
\frac{2}{3}(9 \mathrm{ft})=6 \mathrm{ft}
$$

with a magnitude given by the area of the triangle,

$$
A=\frac{1}{2}\left(900 \frac{\mathrm{lb}}{\mathrm{ft}}\right)(9 \mathrm{ft})=4050 \mathrm{lb} .
$$

Use the equations of equilibrium to determine the reaction forces, taking the sum of the moments about point A.

$$
\begin{aligned}
\sum F_{x} & =A_{x}-B_{x}+4050 \cos 60^{\circ}=0 \\
\sum F_{y} & =A_{y}-4050 \sin 60^{\circ}=0 \\
\sigma^{+} \sum M_{A} & =-(4050 \mathrm{lb})(3 \mathrm{ft})+B_{x}\left(9 \sin 30^{\circ} \mathrm{ft}\right)=0
\end{aligned}
$$

Solving this system of equations yields

$$
\begin{aligned}
& A_{x}=675 \mathrm{lb} \\
& A_{y}=2025 \mathrm{lb} \\
& B_{x}=2700 \mathrm{lb} .
\end{aligned}
$$

Now that the reactions at A and B are known, the internal loadings on section $b-b$ through point C can be determined using the method of sections. Since it's simpler, choose the section of the beam from B to C.

This $450-\mathrm{lb}$ force is the resultant force of the part of the distributed force from B to C. The height of the distributed force triangle at C is found using similar triangles.

$$
\tan \alpha=\frac{900}{9}=\frac{h}{3} \quad \rightarrow \quad h=300 \frac{\mathrm{lb}}{\mathrm{ft}}
$$

As a result, the part of the distributed force from B to C has an area of

$$
A=\frac{1}{2}\left(300 \frac{\mathrm{lb}}{\mathrm{ft}}\right)(3 \mathrm{ft})=450 \mathrm{lb} .
$$

This is the magnitude of the force; it passes through the centroid, which is

$$
\frac{2}{3}(3 \mathrm{ft})=2 \mathrm{ft}
$$

from B. Use the equations of equilibrium to find the internal loadings at C.

$$
\begin{aligned}
\sum F_{x} & =-V_{b}-B_{x}+450 \cos 60^{\circ}=0 \\
\sum F_{y} & =-N_{b}-450 \sin 60^{\circ}=0 \\
\sigma^{+} \sum M_{C} & =-M_{b}-(450 \mathrm{lb})(1 \mathrm{ft})+B_{x}\left(3 \sin 30^{\circ} \mathrm{ft}\right)=0
\end{aligned}
$$

Solving this system of equations yields

$$
\begin{aligned}
V_{b} & =225-B_{x}=-2475 \mathrm{lb} \\
N_{b} & =-225 \sqrt{3} \approx-390 \mathrm{lb} \\
M_{b} & =\frac{3}{2}\left(-300+B_{x}\right) \approx 3600 \mathrm{lb} \cdot \mathrm{ft}
\end{aligned}
$$

A minus sign means that the vector is in the opposite sense than indicated in the free-body diagram.

